武钢5号高炉设计特点

武钢5号高炉设计特点

一、武钢5号高炉的设计特点(论文文献综述)

刘栋梁,陈令坤[1](2021)在《武钢有限7号高炉炉况诊断系统的开发和应用》文中提出开发了武钢有限7号高炉炉况诊断系统,包括炉顶料面雷达监测系统、炉身上部料层结构模型、高热负荷区域的铜冷却壁热面渣皮监测模型,以及武钢高炉专家系统中的过程参数计算、炉况状态的模式识别等内容,并建立了案例库和知识库。炉顶料面雷达监测系统和炉身上部料层结构模型能够直观反映高炉料面形状和上部炉料下降过程,为高炉调控布料提供了重要参考。铜冷却壁热面渣皮监测模型为高炉控制炉型、维护铜冷却壁正常运行提供了帮助。过程参数计算可以及时反映高炉炉温变化趋势。炉况状态的模式识别以及案例库和知识库可以帮助操作人员判断炉况状态,并提出具体的炉况调剂方式的建议。该系统应用后,高炉利用系数、煤气利用率、燃料比技术指标有了明显改善。

卢正东[2](2021)在《高炉炉衬与冷却壁损毁机理及长寿化研究》文中研究表明现代高炉的技术方针是“长寿、高效、低耗、优质和环保”,其中“长寿”是实现高炉一切技术目标的基础。针对目前我国高炉普遍存在的炉缸炉底炉衬和高热负荷区域冷却壁的损毁问题,本文以武钢高炉为研究对象,首先确定了高炉炉衬与冷却壁长寿技术研究方法,然后分别研究了炉衬与冷却壁的损毁机理。在此基础上,进一步开展了炉缸结构设计与炉衬选型研究,探讨高热负荷区域铜冷却壁渣皮与热流强度监测系统的开发与应用,并提出了武钢高炉长寿优化措施,全文主要结论如下:武钢4号、5号高炉大修破损调查表明:炉缸炉底侵蚀特征主要表现为炉缸环缝带侵蚀和炉缸炉底象脚状侵蚀。通过炭砖热应力计算和岩相分析,炉缸环缝产生原因在于炉缸径向热应力较大,当炭砖性能较差时会产生微裂纹,在炉内高压下有害元素以蒸汽形式迁移至裂纹处发生液化,并与CO发生反应,生成氧化物、碳酸盐和石墨,形成炉缸环缝侵蚀带。通过炉底死焦柱受力分析与计算,死铁层较浅,死焦柱沉坐炉底,加剧铁水对炭砖侧壁的环流冲刷是造成炉缸炉底象脚状侵蚀的主要原因。针对炉役中期炉底温度异常升高问题,武钢采用钛矿护炉,停炉取样显微分析表明:沉积物中Ti的存在形式主要为Ti C、Ti N、Ti单质,并呈现颗粒皱褶和堆叠形貌,当其附着在炉缸侧壁和炉底时可有效缓解侵蚀进程。武钢生产实践表明,当钒钛矿用量2%~3%时,生铁含钛可达0.10~0.20%,渣铁流动性尚可,炉衬侵蚀速度得到控制。通过武钢5号、1号、7号和6号高炉开展大中修破损调查,对高炉铸铁冷却壁和铜冷却壁开展了力学性能、理化指标和显微结构分析,研究结果表明:铸铁冷却壁主要表现为纵、横裂纹引起的壁体开裂,严重部位存在壁体烧损甚至脱落,其损毁原因主要在于热应力造成的壁体开裂,以及高炉气氛下铸铁基体的氧化与生长。铜冷却壁损毁机理在于:高炉渣皮脱落后,煤气流和炉料与铜冷却壁热面直接接触,使壁体温度升高力学性能下降产生热变形,应力应变长期积累使壁体热面形成微小裂纹,然后在渣铁和煤气的渗透作用下发生熔损和脱落。对于炉腹段铜冷却壁底部水管处的损毁,原因还在于结构设计存在缺陷,冷却壁底部容易受到高温煤气流、渣铁流的冲刷,从而造成壁体的损毁。为满足高炉长寿要求,针对炉缸砌筑结构和炉衬选型问题,通过建立传热模型,采用数值模拟软件计算了高炉全生命周期炉缸传热效果,结果表明:在烘炉阶段,采用停水方式可保证烘炉效果。在炉役初期和中期,不同炉缸结构温度场相近,仅当进入炉役后期,温度差别才逐渐扩大。综合传热计算、热阻分析和建造成本,采用铸铁冷却壁可以满足炉缸传热的需要。针对“铸铁冷却壁+大块炭砖”与“铸铁冷却壁+复合炭砖”两种炉缸结构,研究了炭砖在不同导热系数下的炉缸温度场分布情况。当炉役初期陶瓷杯存在,大块炭砖导热系数为25W/(m·K)时,前者炭砖热面温度为571℃,后者为537℃,可基本杜绝有害元素化学反应的发生;当炉衬热面降至1150℃时,前者耐材残余厚度为850mm,后者为1060mm,均可满足高炉长寿服役要求。针对“铸铁冷却壁+大块炭砖”结构炉缸,研究了冷却比表面积对炉缸温度场的影响。结果表明不同冷却比表面积冷却壁对应的炉衬热面温度差别始终很小,即单纯提高冷却比表面积对降低炉缸温度场作用甚微,故在实际设计时应结合冷却壁制造和冷却水运行成本综合考虑,采用适宜高炉安全经济生产需要的冷却比表面积和水管参数。另外,对炉缸立式和卧式冷却壁优缺点进行了对比分析,从炉缸全周期使用需求考虑,建议采用立式冷却壁。最后,提出了提出了延长高炉炉缸寿命的技术对策及炉缸安全状况的评价方法。针对单独采用热电偶温度或水温差计算热流强度的不足,武钢采取计算和记录冷却壁水温差、热流强度、跟踪热电偶测温数据以及炉役末期炉壳贴片测温相结合的方法综合判断炉缸状况,收效良好。针对高热负荷区域冷却壁的损毁问题,首先对武钢7号高炉铜冷却壁渣皮进行了化学成分、物相形貌、及物理性能研究:其主要物相为黄长石、尖晶石和碳,渣皮中Al2O3含量较高,易形成高熔点的镁铝尖晶石。渣皮流动性温度为1584.1℃,粘度为1000m Pa·s(1550℃),导热系数约为1.5W/(m·K)。然后确定了武钢高炉渣皮厚度、热流强度、炉气温度的计算方法,开发了铜冷却壁渣皮厚度与热流强度监控系统,该系统目前运行稳定,可掌握高炉渣皮波动规律,快速研判高炉渣皮厚度、热流强度及炉型变化趋势,及时调整高炉操作模式。针对炉腹铸铁冷却壁损毁问题,采用增大炉腹冷却壁下部厚度,利用壁体上窄下宽的外型缩小炉腹角,有效遏制了冷却壁的损毁现象;针对炉腹铜冷却壁底部损毁问题,将进水管处改为凸台包覆设计,以防止煤气流从炉腹炉缸衔接处窜入烧坏进水管,从而解决了炉腹段铜冷却壁的损毁问题。冷却壁长寿服役的核心在于保持冷却壁始终处于无过热状态,武钢在高炉生产中,采取控制有害元素入炉,稳定用料结构,保持合理的热制度和造渣制度,通过上下部调剂和强化冷却系统管理,确保冷却壁渣皮厚度合理,从而有效延长了冷却壁的使用寿命。

武月清,仪德刚[3](2021)在《苏联专家援建包头钢铁公司考略》文中研究指明包头钢铁公司(简称包钢)是"一五"时期苏联重点援助钢铁项目之一,由苏联黑色冶金设计院完成初步设计方案,从选址到1号高炉出铁,都是在苏联专家指导下进行的。基于档案等文献资料对苏联专家从1953年参与包钢筹建到撤走的七年时间所做的具体工作进行了梳理,认为苏联专家援建包钢是包钢得以建立的重要因素,对于苏联钢铁技术向中国的转移起到了关键作用。苏联专家在包钢工作期间帮助包钢推广和采用了新技术,对加快包钢建设速度、节约原材料和国家资金、保证工程质量等均起到了积极的作用,也为包钢的后期发展打下了基础。

李昊堃[4](2020)在《太钢高碱度碱性球团矿制备及应用技术基础研究》文中研究说明碱性球团矿具有生产过程污染物排放量、固体燃料消耗量和返料量低于烧结矿,且其高温冶金性能优于酸性球团矿,高炉配用后有利于高炉实现低渣比、低燃料比及低污染物排放冶炼等多方面优点。国外企业生产碱性球团矿一般采用带式焙烧机工艺(使用气体燃料),但我国由于能源结构以煤为主,国内球团矿生产企业(特别是独立运行的球团矿生产企业)主要采用以煤为燃料的链篦机-回转窑工艺。因此,需要从冶金物理化学的基本原理出发,结合必要的实验室研究和工业化试验,针对链篦机-回转窑碱性球团矿生产及高炉碱性球团矿应用过程中涉及的环节开展系统的基础研究工作。本文结合太钢未来在自有铁矿资源利用及高炉炉料结构优化方面的发展规划,基于太钢自产铁矿粉的原料特性,围绕链篦机-回转窑法碱性球团生产和高炉碱性球团应用,通过理论分析、模型计算、实验模拟及工业试验,系统研究了碱性球团焙烧特性和还原膨胀微观机制、链篦机-回转窑法生产碱性球团的适宜热工制度、高比例碱性球团高炉炉料结构对高炉冶炼过程影响的热力学机理。为全面推广链篦机-回转窑法碱性球团生产,以及高炉碱性球团矿应用提供理论基础和技术支撑。基于分子理论建立的球团矿焙烧过程热力学模型,系统研究了碱度对球团矿焙烧过程中形成复杂分子及其含量的影响。并在实验室条件下,以太钢自产铁精矿作为原料,制备了不同碱度的球团矿,应用XRD、SEM、EDS、Image-Pro Plus等研究手段,检测了不同碱度球团矿中复杂分子及其含量,验证了热力学模型计算结果的准确性。基于分子理论建立的热力学模型,为研究球团矿的焙烧过程提供了一种新的可靠研究手段,可以方便的预测出原料成分及焙烧温度变化对于球团矿焙烧过程的影响。利用建立的球团矿焙烧热力学模型结合必要的实验研究,系统研究了碱度对于球团矿焙烧固结机理的影响。研究结果表明,对于酸性球团矿而言,其固结机理为赤铁矿晶体再结晶并形成连晶结构;对于碱性球团矿而言,其固结机理为铁酸钙、含钙硅酸盐等低熔点化合物取代Fe2O3微晶连接成为赤铁矿晶体间的粘结相,并且球团矿的碱度不同粘结相的种类不同。当球团矿碱度小于1.0时,粘结相以钙铁橄榄石为主;当球团矿碱度大于1.0时,粘结相中的复合型针状铁酸钙含量增加,铁酸钙取代钙铁橄榄石成为碱性球团的主要粘结相。在碱性球团矿固结机理研究的基础上,进一步研究了碱度对球团矿还原膨胀行为的影响。研究结果表明,碱度小于1.0的球团矿,其还原过程中产生膨胀裂纹的主要原因为,钙铁橄榄石包裹的Fe2O3颗粒与独立的Fe2O3颗粒在还原速度上存在差异,使得球团矿内部产生应力集中,导致晶体结构发生破裂;碱度大于1.0的球团矿,由于球团矿的主要固结相转变为还原速度快的铁酸钙,在还原过程中其熔点较低,形成液相收缩后形成孔洞,减小了球团内因体积膨胀产生的应力集中。因此,碱度大于1.0的碱性球团矿在高炉内还原过程的体积膨胀率显着降低。通过实验室造球、焙烧试验,链篦机-回转窑模拟(扩大)试验及现场工业试验,研究了利用太钢自产精矿粉制备碱性球团矿的适宜预热焙烧制度。研究结果表明,鼓风干燥段风温230℃;抽风干燥段风温420℃;预热Ⅱ段风温1160-1180℃;回转窑窑头温度1165-1175℃。在以上工艺条件下生产的碱性球团矿指标:TFe含量62.3%,CaO/SiO2≥1.0,抗压强度≥3500N/个球,还原膨胀率≤15%。可以满足太钢大型高炉对入炉原料使用要求。基于最小自由能原理建立的气-固相热力学计算模型,系统研究了碱性球团矿比例对高炉块状带间接还原过程的影响规律。结果表明,随碱性球团矿比例的增加,炉料在高炉上部块状带的还原度呈下降趋势。其主要原因为随球团矿比例的增加,高炉炉料结构中的铁氧化物组成发生了变化,导致高炉块状带气固相还原反应的反应条件及平衡组成均发生了变化,使得综合炉料还原度下降。基于离子-分子共存理论,建立的高炉渣铁脱硅反应硅元素分配比热力学模型。研究了渣系中各组元的成分变化及对硅分配系数的影响,并定量地计算出渣中各复杂分子及各组元对脱硅的贡献。研究结果表明,高炉渣系中对硅元素分配比影响较大的复杂分子有CaO·SiO2、2CaO·SiO2、CaO·MgO·2SiO2三种,简单分子有CaO、MgO两种。由于碱性球团矿中的CaO含量要远高于酸性球团矿,因此,当高炉配用碱性球团矿有利于脱硅反应的进行。

曾宇,姜曦,曹森华,贾镇汇,付聪,贾西明,寇明银[5](2020)在《2019年我国3000m3-4000m3高炉技术指标浅析》文中研究指明文章对2019年我国3000m3级高炉的主要技术经济指标、入炉原燃料条件、生产操作参数等进行了简要分析,并就高炉综合管控提出建议,企业应根据自身资源情况和条件,发展适合企业的高炉生产操作技术。

王卫星[6](2020)在《新媒体时代包钢企业文化传播研究》文中研究说明66年前,新中国在内蒙古包头创建了包钢,获评“百年老店”的企业文化底蕴是其核心竞争力的要素。企业传播学诞生于1923年,由英国人桑德拉·奥利弗教授最早提出。企业传播学是研究企业如何运用组织效能、传播媒介与社会交流的学科。新媒体时代,诸如“华为”“宝武集团”等具有较大影响力的名企,企业文化传播已经从“软实力”转化为产品畅销和企业发展的“硬核”。包钢集团亟需拥有专业的,尤其是基于市场化分工形成的新媒体传播团队,也缺乏基于市场竞争的传媒技术和推广模式。包钢的新闻传播类工作具有大型国有企业的组织属性,实际仍以宣传部引领企业传统媒体为主的运行格局。因相对保守的宣传理念,企业文化传播的认知有待更新。在融媒体视阈下,具有对内传播受众与对外传播发端双重条件的员工群体,受制度约束与意识认同的局限,导致包钢企业文化双向传播中,媒介延伸到人的未融合、不互动、不高效。包钢企业文化传播的载体中,新媒体产品的技术含量低,传播面狭窄,削弱了包钢企业文化对外传播力,进而局限了包钢的社会影响力。本文具体点出问题:相关包钢的视频尤其是宣传片,内容同质化,不精致不活泛,格调高大上、枯燥、教条,格式千篇一律;短视频“生拍直传”较多,影响企业文化产生高辨识度的传播效果;媒介上,对内传播渠道单一,对外传播途径固化,富于泛众化发布,而缺少分众化细分,在跨界印象与垂直推送方面需要强化。针对问题探析解决问题的方法:开展多样化视频传播,提取包钢企业文化精髓,改善内容和表现手法在创作与制作上的不足;新媒体产品须加专业化技术分类处理,加强对细节的把握;拍摄专业纪录片,具有身临其境的真实感,接地气而充满人情味。策略:首先,在包钢现有新媒体产品的基础上,布局传播类型的多元化。以短视频为主,多渠道网络传播,精准推荐,分场合、分对象、分层次的对外传播,制作“1+1>2”高附加值的新媒体产品。其次,注重人文关怀的拍摄取材,刻画细节表达,提高专业水平的同时,改善内容表现力的不足。还要增强视频传播力度,拓展包钢企业文化对外传播,提高包钢跨界、跨行业的知名度。综合运用网络传播平台、社交媒体,员工发挥协同效应显着增强包钢企业文化传播,着实扩大包钢的社会影响力。传媒转型升级飞快,5G已来,互联网+等等。笔者选题包钢企业文化传播研究,缘起包钢企业文化传播现状与趋势及工作经历的观察与思考;基于暑期调研访谈结合视频内容分析等研究方法,做了对包钢企业文化传播模式的探析研究。目前对“视频化传播国有企业文化”的研究较少,具体到“视频化传播包钢企业文化的研究”微乎其微。这也说明包钢的影响力还不够大。长期以来,关于“视频化传播国有企业文化”的研究存在薄弱环节而出现研究空档。“国有企业文化传播”这一大块研究“田野”势当倍加珍惜并开发应用。综上,本论文谨此展开研究,以期解决问题。正文分六块:引言+四章+结语。引言,介绍选题意义、文献综述、研究方法、内容创新及预期效果。第一章,概论新媒体时代的企业传播,层递引论企业传播学,具体到企业文化传播的论述。第二章,更具体论述包钢企业文化传播,以包钢企业形象引入包钢企业文化正题,以图表、框架式分类研究包钢企业文化传播的主要载体:视频。从包钢企业媒体定制传发的三大网络视频平台,选取含有“包钢”内容的各类视频,做了311个视频分析,从中提取包钢企业文化传播元素,部分在附录表中做了详细深入分析。笔者调研包钢新闻宣传部门,查找资料,归纳总结出《包钢企业文化理念体系》《包钢企业文化传播的发展历程》。第三章,因包钢传统媒体《包钢日报》及“包钢电视”存在企业文化传播的内容偏差与渗透不足等问题,着重从包钢企业文化传播的资源分析与传/受状况调查,探究解决问题的策略。笔者谨以有限的文学思维提炼确定标题,以新闻传播学理论及新媒体理论支撑论证。采用了实地与网络相结合的调查研究方法:调查访谈包钢三个基层单位轨梁厂、无缝厂、动供厂,合计227名基层及一线员工,并作答55份调查问卷;网络回收1188份有效调查问卷,按每份答卷的答题速度、认真态度、思考创见三个要素,筛选出作答质量比较高的问卷713份;笔者融合了相当于长期田野调查的十几年工作体察。以期量化与质化相结合做研究。另外,调查访谈了包钢媒体从业人员。综上,包钢企业文化传播的资源概括为:一部神曲《草原晨曲》;一匹神马“双翼神马”;一场历史性的重大剪彩“周恩来总理为包钢一号高炉出铁剪彩”,将包钢企业文化浓缩传播为公众难忘的包钢印象。传播包钢企业文化正能量的载体以主打产品品质与颂扬榜样典型人物为主,包钢产品品牌对外传播成效显着,但是过度的典型人物宣传反而“以少盖多”忽略了众望所归的对基层员工的传播。包钢企业文化传播,赋权在宣传部,赋能在新闻中心,实际仍存在重视对内传播而轻视对外传播的问题。第四章,重点从包钢新媒体传播路径与策略展开论述。做了媒介影响分析,传播内容与受众需求的契合度与满意度分析。新媒体路径分析了:包钢融媒体的传播规划、公众号的运行、新媒体产品呈现进程的媒介影响、传播与受众需求的契合及满意度分析。关于新媒体如何呈现包钢企业文化的传播策略,摘要概括四个不同角度给出结论:深入了解包钢企业文化内涵,掌握基层的鲜活的素材;把握企业媒体的传播节点,厘清多重传播价值链接;优化公众号的内容,促动包钢员工个人或团队自发的对外传播;以全媒体思路与措施,拓展包钢企业文化对外传播,持续扩大包钢的影响力。包钢企业文化传播的创新虽有不足之处,但可为其他企业运行企业文化传播提供传播模式的启示。本文将新闻传播学与企业文化传播理论相结合,调查数据,探测传播进路补充了一些研究空位;通过5W、第三人效果、精准推荐、后受众等新闻传播学理论,探析研究包钢企业文化传播,对其他企业文化传播或有借鉴与参考价值。

张庆喜,曾伟涛[7](2020)在《武钢8号高炉高产长寿的主要经验》文中提出武钢8号高炉投产10年来,不仅没有一块冷却壁损坏,而且年平均产铁量达到设计指标(330万t)的108.3%,特别是2019年以来,8号高炉继续维持高产长寿的态势,各项技术经济指标再创新高。从设计、高炉操作两方面出发,概要总结8号高炉的高产长寿工作,认为优良的设计炉型、中心加焦的技术、高炉经验诊断模式、炉前均衡出铁操作技术是实现高产长寿的关键。

牛群[8](2020)在《长寿高炉炉缸炉底影响因素研究》文中进行了进一步梳理炉缸寿命是当前大高炉长寿的决定性因素之一。只有掌握了炉缸内部铁水流动、炉缸焦炭、炭砖及其保护层之间的交互作用规律,才能找出延长炉缸寿命的措施。铁水对炉缸侧壁的冲刷侵蚀是导致炉缸寿命短的主要原因之一。炉缸长寿的关键是在炭砖热面凝结一层渣铁壳,隔离炙热铁水与炭砖的直接接触。炭砖附近的铁水流速和炭砖热面温度是影响渣铁壳凝结的主要因素。影响炉缸侧壁附近铁水流速的主要因素有(1)死料柱焦炭行为(死料柱空隙度分布、焦炭粒度和焦炭密度等);(2)铁口维护制度;(3)炉缸工作状态(死料柱浮起高度和中心透液性等)。砌筑和冷却良好的高炉,如果炭砖形成脆化层,会降低炭砖的导热性能,使炭砖热面温度升高,不利于炭砖热面渣铁壳的新生和稳定存在,这也是导致炉缸寿命短的主要原因之一。本文通过炉缸破损调研、数值仿真和热态实验三种方法对长寿炉缸炉底的影响因素进行了研究,加深了对炉缸内部死料柱焦炭、炭砖脆化层、渣铁壳和炉缸铁水流动规律的认识,对高炉炉缸设计和高炉操作有一定的指导意义。本文首先通过2800m3和5500 m3工业高炉炉缸破损调研的方法详细研究了风口以下1.5m至炉底之间不同炉缸高度和不同径向位置死料柱焦炭的无机矿物组成、石墨化程度、粒度分布、强度和死料柱空隙度分布。结果表明,2800m3工业高炉风口以下2.5m至炉底之间死料柱焦炭内部填充了大量高炉渣。在5500 m3高炉炉缸破损调研中也发现了大量高炉渣浸入风口以下1.8m至铁口中心线之间死料柱焦炭中。死料柱焦炭无机矿物质含量随着距风口距离的增加而增加,平均含量为45%。大部分死料柱焦炭质量是相同条件下入炉焦炭质量的1.43-2.21倍。死料柱焦炭高度石墨化,且越靠近炉底,焦炭粉末石墨化程度越高。2800 m3和5500m3高炉死料柱焦炭平均粒径在直径方向上分别呈“M”和倒“V”型,焦炭平均粒径分别为28.7mm和23.5mm,分别较入炉焦炭降低了 47%和56%。靠近死料柱底部附近,死料柱空隙度随着距风口距离和距炉墙距离的增加而降低,平均空隙度为0.3。其次,在炉缸死料柱焦炭行为研究的基础上,建立了包括死料柱和泥包在内的5500 m3高炉炉缸铁水流动数学模型,研究了不同铁口维护制度(铁口深度、铁口倾角和双铁口出铁等)和不同炉缸工作状态(死料柱浮起高度和中心透液性等)对炉缸侧壁附近铁水流速的影响。结果表明,增加出铁口深度、铁口倾角为10°和选择夹角为180°的双铁口出铁有利于降低炉缸侧壁附近的铁水流速,延长高炉炉缸寿命。当死料柱中心、中间和边缘空隙度分别为0.2、0.3和0.35时,炉缸炉底交界面附近的铁水流速随着死料柱浮起高度(0.8m→0.1m)的降低而大幅度增加,这表明死料柱小幅度浮起可能导致炉缸“象脚状”侵蚀。死料柱浮起高度处于0.6m-0.8m之间有利于高炉炉缸长寿。死料柱沉坐和浮起时,只有当死料柱中心透液性较差区域(空隙度为0.1)分别发展为炉缸直径的26%和50%时才会引起炉缸侧壁附近铁水流速增加。然后,通过2800m3高炉炉缸破损调研分析了碱金属和锌对炉缸炭砖的蚀损机理和炭砖凝结渣铁壳的形成机理。在2800m3高炉炉缸残余炭砖脆化层中含有大量的Zn2SiO4、KA1SiO4、ZnO、KA1Si2O6及少量的 ZnS 和ZnAl2O4。结合当前炭砖和残余炭砖脆化层矿物质组成,揭示了炭砖脆化层的形成机理。在炉缸炭砖热面凝结层和炉底陶瓷垫中均发现了高炉渣的存在,凝结层中的高炉渣主要来源于浸入到焦炭内部的高炉渣,而不是来源于入炉焦炭灰分。最后,设计建造了模拟高炉炉缸冶炼过程的热态实验炉。在炭砖冷面设计有冷却水管模拟炉缸冷却壁。三相交流电电极作为加热源,保证渣铁水温度在1550℃左右。通过热态实验炉炉底吹氮气搅拌熔池来模拟炉缸渣铁水流动。实验发现,当炭砖热面温度低于渣铁壳凝固温度,在炭砖热面就可以形成渣铁壳。在该热态实验中通过在炉缸炭砖中产生钾、钠和锌蒸气,模拟了高炉炉缸持续的钾、钠和锌蒸气对炭砖的破坏。总之,通过本文研究表明,高炉渣通过死料柱焦炭的运动可以被带入铁口以下炉缸区域。由于死料柱焦炭浸入大量高炉渣导致死料柱重力增大,为保证死料柱浮起较高高度应适当增加死铁层深度。在高炉冶炼过程,适宜条件下,炉缸炉底内衬热面能够凝结渣铁壳。为延长高炉炉缸寿命,应制定合理的出铁维护制度和保证入炉焦炭质量,改善死料柱中心透液性,降低炉缸侧壁铁水流速,并严格控制入炉K和Zn负荷,避免炭砖脆化层的形成,促进炭砖热面渣铁壳的形成,隔离与炙热铁水的直接接触,延长高炉炉缸寿命。

卢正东,向武国,顾华志,黄奥,付绿平[9](2019)在《武钢高炉炉缸耐火材料结构创新》文中指出分析了目前不同炉缸结构的优缺点,介绍了武钢高炉在炉缸耐火材料结构设计上的创新。武钢自2006年起,新建高炉炉缸从冷却壁端至炉内热面,依次砌筑小块炭砖、炭捣料和大块炭砖。小块炭砖尺寸小,可直接顶砌冷却壁;大块炭砖砖缝少,抗铁水渗透性好;同时,炉缸从热端到冷端热导率依次增大,强化了炉缸的传热效果,有利于炉缸内侧自保护渣铁壳的形成。采用上述新型结构的炉缸监测温度正常,预计可以满足一代炉龄20年的服役要求。

徐文轩[10](2020)在《高炉布料偏析优化及炉内气固两相流动特征研究》文中提出高炉煤气流合理分布对高炉长寿、高效、低耗和优质有重要作用。高炉煤气流在高炉内部经过风口、软熔带和块状带到达料面,炉顶装料设备及制度对料面炉料分布、块状带炉料分布和软熔带有重要影响。目前,高炉无钟炉顶系统主要分为并罐式和串罐式。由于并罐式无钟炉顶系统具有赶料能力强和建设成本低等优点,因此被国内大多数大型高炉所采用,如宝钢1#4966 m3高炉、梅钢5#4070 m3高炉和首钢京唐1#、2#及3#5500m3高炉等。研究发现并罐式无钟炉顶高炉布料过程会产生落点偏析、流量偏析、粒度偏析和碱度偏析,以上偏析会影响煤气流在块状带的分布,从而影响块状带炉料的预热和还原,进一步影响到软熔带,最终影响高炉长寿稳定顺行。无钟炉顶设备结构和装料制度对以上偏析均有影响。大型高炉炉喉直径更大,一旦无钟炉顶设备结构及装料制度不合理,会导致更为严重的落点偏析、流量偏析、粒度偏析和碱度偏析。因此,优化并罐式无钟炉顶设备结构及装料制度,对大型并罐式无钟炉顶高炉长寿稳定顺行至关重要。本文首先建立了包含矿焦槽、上料主皮带、换向溜槽、左右料罐、Y型管、中心喉管、旋转溜槽和炉喉的5500 m3高炉并罐式无钟炉顶系统三维几何模型,运用离散单元法仿真和1:1模型实验研究了无钟炉顶设备结构和装料制度对高炉布料过程落点偏析、流量偏析、粒度偏析和碱度偏析的影响,主要研究内容及结果如下:1:1模型实验结果与离散单元法仿真结果基本吻合,验证了离散单元法仿真结果的准确性和可靠性。通过离散单元法仿真分析了料罐出口位置(料罐出口在左、料罐出口在中和料罐出口在右)、料罐出口倾角(50°、60°和70°)和换向溜槽倾角(35°、45°和55°)对落点偏析、流量偏析和粒度偏析的影响。结果表明料罐出口位置、料罐出口倾角和换向溜槽倾角对落点偏析和流量偏析影响较小。当料罐出口在中、料罐出口倾角为70°和换向溜槽倾角为55°时,料面中心炉料粒度较大,料面径向炉料粒度分布更有利于发展中心气流。通过离散单元法仿真分析了中心喉管直径(600mm、650 mm和730 mm)和旋转溜槽结构(光面圆溜槽、料磨料圆溜槽、光面方溜槽和料磨料方溜槽)对落点偏析、流量偏析和粒度偏析的影响。结果表明中心喉管直径和旋转溜槽结构对粒度偏析影响较小。缩小中心喉管直径和选用方溜槽能够有效减小落点偏析和流量偏析。通过离散单元法仿真分析了不同含铁炉料上料时序(块矿位于上料时序料头、块矿位于上料时序料中、块矿位于上料时序料尾和块矿占据整个上料时序)对流量偏析、粒度偏析和碱度偏析的影响。结果表明不同含铁炉料上料时序对流量偏析和粒度偏析影响较小。当块矿位于上料时序料头时,综合炉料碱度在料面径向上分布最均匀。通过离散单元法仿真分析了入炉球团矿比例(30%、40%、50%和60%)对落点偏析、流量偏析、粒度偏析和碱度偏析的影响。结果表明球团矿比例对料面炉料落点偏析和流量偏析影响较小。随着球团矿比例的提高,炉料平均粒度也随之增大,料面径向综合炉料碱度分布逐渐变得不均匀,料层空隙度增大,料层透气性变好。为了更加深入地研究影响高炉煤气流分布的因素,实现对煤气流的控制。本文建立了 5500 m3高炉本体三维几何模型,利用离散单元法和计算流体力学耦合仿真分析了软熔带倾角(30°、45°和60°)、软熔带根部高度(9.6 m、12.6m和15.6m)和矿石层厚度(1m、1.2m和1.4m)对炉内气固两相流动及分布的影响。计算结果表明:(1)软熔带倾角及其根部高度增大和矿石层厚度减小均能降低高炉料柱压差。(2)软熔带倾角及其根部高度增大,软熔带顶部区域(高炉中心)气流速度也随之增大。(3)软熔带倾角及其根部高度增大,均会导致炉内死焦堆区域随之减小。(4)软熔带倾角及其根部高度增大,死焦堆区域内焦炭颗粒所受应力随之减小,死焦堆表面颗粒易于进入回旋区被消耗。总之,通过优化并罐式无钟高炉炉顶设备结构和装料制度,实现料层中合理的粒度偏析,避免其落点偏析、流量偏析和碱度偏析,结合原燃料冶金性能和其它高炉操作制度,保持适当的软熔带倾角及其根部高度和料层厚度,有利于实现高炉长寿、高效和绿色生产。

二、武钢5号高炉的设计特点(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、武钢5号高炉的设计特点(论文提纲范文)

(1)武钢有限7号高炉炉况诊断系统的开发和应用(论文提纲范文)

0 引言
1 高炉炉况诊断系统的开发
    1.1 雷达监测的料面形状和炉身上部料层结构模型
    1.2 高炉铜冷却壁渣皮厚度监测系统
    1.3 高炉过程参数计算和炉况状态的模式识别
2 系统的应用效果和展望
3 结论

(2)高炉炉衬与冷却壁损毁机理及长寿化研究(论文提纲范文)

摘要
Abstract
引言
第1章 文献综述
    1.1 现代高炉长寿概况
    1.2 高炉长寿设计研究进展
        1.2.1 炉缸结构
        1.2.2 炉底死铁层
    1.3 高炉炉衬与冷却壁选材研究进展
        1.3.1 耐火材料
        1.3.2 冷却壁
    1.4 高炉损毁机理研究进展
        1.4.1 炉缸炉底损毁机理
        1.4.2 炉体冷却壁损毁机理
    1.5 高炉传热机理研究进展
        1.5.1 高炉炉缸炉底传热
        1.5.2 高炉炉体冷却壁传热
    1.6 本论文的提出和研究内容
        1.6.1 论文提出
        1.6.2 研究内容
第2章 高炉损毁机理研究方法
    2.1 高炉破损调查
        2.1.1 破损调查内容
        2.1.2 破损调查方法
    2.2 实验研究方法
        2.2.1 炭砖表征
        2.2.2 冷却壁表征
        2.2.3 渣皮表征
    2.3 高炉炉衬与冷却壁传热性能研究
        2.3.1 传热模型建立
        2.3.2 模型验证
第3章 武钢高炉炉缸炉底损毁机理研究
    3.1 高炉炉缸炉底损毁特征分析
        3.1.1 武钢4 号高炉破损调查(第3 代)
        3.1.2 武钢5 号高炉破损调查(第1 代)
    3.2 炉缸炉底损毁机理研究
        3.2.1 炉缸环缝侵蚀
        3.2.2 炉缸炉底象脚区域损毁
    3.3 高炉钛矿护炉研究
        3.3.1 Ti(C,N)形成热力学分析
        3.3.2 破损调查取样与表征
        3.3.3 武钢高炉钛矿护炉效果分析
    3.4 本章小结
第4章 武钢高炉冷却壁损毁机理研究
    4.1 高炉冷却壁损毁特征分析
        4.1.1 武钢5 号高炉破损调查(第1 代)
        4.1.2 武钢1 号高炉破损调查(第3 代)
        4.1.3 武钢7 号高炉破损调查(第1 代)
        4.1.4 武钢6 号高炉破损调查(第1 代)
    4.2 球墨铸铁冷却壁损毁机理研究
        4.2.1 力学性能分析
        4.2.2 显微结构分析
        4.2.3 损毁机理分析
    4.3 铜冷却壁损毁机理研究
        4.3.1 力学性能分析
        4.3.2 理化指标分析
        4.3.3 显微结构分析
        4.3.4 损毁机理分析
    4.4 本章小结
第5章 武钢高炉炉缸内衬设计优化研究
    5.1 高炉炉缸全生命周期温度场分析
        5.1.1 烘炉阶段炉缸温度场
        5.1.2 炉役初期炉缸温度场
        5.1.3 炉役全周期炉缸温度场
        5.1.4 炉役自保护期炉衬厚度
    5.2 炉缸传热体系结构优化研究
        5.2.1 炉缸炭砖传热体系优化
        5.2.2 炉缸冷却结构优化
    5.3 高炉炉缸长寿化设计与操作
        5.3.1 炉缸结构设计和选型
        5.3.2 高炉炉缸长寿操作技术
    5.4 本章小结
第6章 武钢高炉冷却壁长寿优化研究
    6.1 高炉冷却壁渣皮特性及行为研究
        6.1.1 渣皮物相组成及微观结构研究
        6.1.2 渣皮流动性分析
        6.1.3 渣皮导热性能及挂渣能力分析
    6.2 高炉冷却壁渣皮行为监测研究
        6.2.1 渣皮厚度及热流强度计算
        6.2.2 铜冷却壁渣皮监测系统研究
    6.3 高炉冷却壁长寿技术对策研究
        6.3.1 高炉冷却壁长寿设计优化
        6.3.2 高炉冷却壁操作优化
        6.3.3 高炉冷却壁渣皮厚度管控技术
    6.4 本章小结
第7章 结论与展望
    7.1 结论
    7.2 展望
本论文主要创新点
致谢
参考文献
附录1 攻读博士学位期间取得的科研成果
附录2 攻读博士学位期间参加的科研项目

(3)苏联专家援建包头钢铁公司考略(论文提纲范文)

1 在包钢工作过的苏联专家
2 苏联专家的具体工作
    2.1 技术援助
        2.1.1 选择厂址和编制包钢设计任务书
        2.1.2 厂区测量、黄河勘测以及扬水试验
        2.1.3 矿石试验
        2.1.4 建设施工附属企业基地的选择和制定设计任务书
        2.1.5 包钢初步设计审查工作
        2.1.6 施工准备和生产基地的建设
        2.1.7 基建与生产同时并进
    2.2 其他工作
        2.2.1 语言学习
        2.2.2 装备引进
        2.2.3 人才培养
3 包钢与苏联专家的合作分析
4 结语

(4)太钢高碱度碱性球团矿制备及应用技术基础研究(论文提纲范文)

致谢
摘要
Abstract
1 引言
2 文献综述
    2.1 球团矿生产工艺的现状及发展趋势
        2.1.1 球团矿的特点
        2.1.2 国外球团矿生产工艺的发展现状
        2.1.3 国内球团矿生产工艺的发展现状
        2.1.4 铁矿球团工艺未来的发展趋势
    2.2 球团矿的生产工艺及特点
        2.2.1 球团矿竖炉生产工艺
        2.2.2 球团矿链篦机-回转窑生产工艺
        2.2.3 球团矿带式焙烧机生产工艺
    2.3 球团矿的种类及特点
        2.3.1 酸性球团矿
        2.3.2 碱性球团矿
    2.4 球团矿还原过程膨胀现象的研究现状
        2.4.1 球团矿还原过程膨胀机理
        2.4.2 碱金属、氟对球团还原膨胀性的影响
        2.4.3 脉石组分对球团还原膨胀性的影响
        2.4.4 含镁添加剂对球团还原膨胀性的影响
        2.4.5 焙烧温度对球团矿还原膨胀率的影响
        2.4.6 还原气氛对球团还原膨胀的影响
        2.4.7 内配碳对双层球团还原膨胀率的影响
    2.5 国内外高炉炉炉料结构中球团矿使用情况
    2.6 课题研究意义及主要研究内容
3 碱性球团制备原料基础性能研究
    3.1 铁精矿基础性能研究
    3.2 膨润土基础性能研究
    3.3 石灰石粉基础性能研究
    3.4 小结
4 碱性球团焙烧固结机理及还原膨胀行为研究
    4.1 球团矿焙烧过程热力学模型建立
    4.2 不同碱度球团矿的模型计算结果及固结机理分析
    4.3 模型计算结果的可靠性验证
        4.3.1 不同碱度球团矿试验的制备研究
        4.3.2 不同碱度球团矿XRD衍射法分析
        4.3.3 不同碱度球团矿显微结构分析
        4.3.4 不同碱度球团矿微观结构图像分析
    4.4 不同碱度球团矿的还原过程体积膨胀机理研究
        4.4.1 不同碱度球团还原过程的体积膨胀性能实验结果
        4.4.2 不同碱度球团矿还原后的物相组成分析
        4.4.3 不同碱度球团矿还原后的显微结构分析
        4.4.4 不同碱度球团矿还原膨胀机理分析
    4.5 小结
5 链篦机-回转窑法碱性球团制备技术研究
    5.1 碱性球团矿生球制备试验
    5.2 碱性球团生球干燥特性研究
        5.2.1 不同碱度下的生球爆裂温度
        5.2.2 不同碱度下的生球干燥速率
    5.3 碱性球团预热焙烧制度研究
        5.3.1 预热制度
        5.3.2 焙烧制度
    5.4 链箅机-回转窑工艺生产碱性球团矿合理工艺参数研究
        5.4.1 碱性球团矿合理链篦机干燥预热工艺参数研究
        5.4.2 碱性球团矿合理回转窑焙烧工艺参数研究
        5.4.3 不同碱度球团矿对比试验研究
    5.5 小结
6 太钢碱性球团矿工业生产试验研究
    6.1 第一次链篦机—回转窑工艺生产碱性球团矿工业试验研究
        6.1.1 工业试验条件
        6.1.2 工业试验过程
        6.1.3 工业试验结果及讨论
    6.2 球团强度对还原膨胀的影响
        6.2.1 不同抗压强度碱性球团矿的外观
        6.2.2 不同抗压强度碱性球团矿的显微结构分析
        6.2.3 不同抗压强度球团还原膨胀机理分析
    6.3 球团粒度对还原膨胀的影响
        6.3.1 不同粒度碱性球团矿的外观
        6.3.2 不同粒度碱性球团矿的显微结构分析
        6.3.3 不同粒度碱性球团矿还原膨胀机理分析
    6.4 第二次链篦机—回转窑工艺生产碱性球团矿工业试验研究
        6.4.1 控制碱性球团矿还原膨胀率的措施
        6.4.2 工业试验条件
        6.4.3 工业试验结果及讨论
    6.5 小结
7 碱性球团矿在太钢特大型高炉炉料结构中的应用研究
    7.1 碱性球团矿对高炉块状带间接还原过程的影响研究
        7.1.1 高炉块状带气固相还原反应热力学模型建立
        7.1.2 模型可靠性评价及计算结果讨论分析
    7.2 碱性球团矿对高炉炉料熔滴性能的影响研究
        7.2.1 炉料熔滴性能实验方案及原料条件
        7.2.2 炉料熔滴性能实验结果及讨论
        7.2.3 基于炉料熔滴试样的渣铁分离行为研究
    7.3 碱性球团矿对高炉炉缸渣铁反应过程的影响研究
        7.3.1 基于离子-分子共存理论的硅分配比预报模型建立
        7.3.2 硅分配比预报模型可靠性评价
        7.3.3 硅分配比预报模型计算结果与讨论
    7.4 小结
8 结论
参考文献
附录A 高炉块状带气固相还原反应热力学模型计算原始数据
附录B 硅分配比预报模型可靠性验证计算原始数据
作者简历及在学研究成果
学位论文数据集

(6)新媒体时代包钢企业文化传播研究(论文提纲范文)

中文摘要
abstract
引言
    (一)论文研究意义及选题缘起背景
    (二)文献综述
        1.新媒体时代传播研究
        2.对视频客户端本身及其传播企业的研究
        3.国有企业传播研究
        4.趋向包钢企业文化传播的研究
    (三)研究方法、内容及创新之处
        1.研究方案方法及可行性分析
        2.研究内容
        3.研究创新
一、新媒体时代的企业传播
    (一)新媒体时代概述
    (二)企业传播
二、包钢企业文化传播
    (一)包钢企业形象
    (二)包钢企业文化
    (三)包钢企业文化传播的发展历程
    (四)三大视频平台中传播相关包钢的报道分析
三、包钢企业文化传播的资源分析与传/受关系调查
    (一)传统媒体的偏差与不足
    (二)包钢企业文化传播资源分析
    (三)包钢企业文化传播的传/受状况调查
四、包钢企业文化传播的路径与策略
    (一)包钢新媒体传播路径
    (二)包钢文化传播策略
结语
参考文献
攻读硕士期间发表论文、参与科研项目及学术会议
    1.发表论文
    2.科研项目情况
    3.参加学术会议
致谢
附录1
附录2

(8)长寿高炉炉缸炉底影响因素研究(论文提纲范文)

致谢
摘要
Abstract
1 引言
2 文献综述
    2.1 世界炼铁工业概述
        2.1.1 古代和炼铁的起源及世界钢铁中心
        2.1.2 高炉巨型化发展概况
        2.1.3 高炉长寿发展概况
    2.2 高炉炉缸侧壁高温点和烧穿位置
    2.3 炉缸炉底侵蚀原因
        2.3.1 铁水环流
        2.3.2 死铁层深度
        2.3.3 砌筑结构
        2.3.4 碱金属和锌侵蚀
        2.3.5 炭砖脆化层
    2.4 高炉炉缸死料柱
        2.4.1 死料柱作用和更新周期
        2.4.2 死料柱焦炭微观形貌及成分研究
        2.4.3 死料柱焦炭粒度分布研究
        2.4.4 死料柱空隙度分布研究
    2.5 高炉炉缸炭砖保护层研究
        2.5.1 富铁层
        2.5.2 富高炉渣层
        2.5.3 富石墨碳层
        2.5.4 富钛层
    2.6 炭砖抗渣铁和碱金属侵蚀性能检测方法
    2.7 研究意义
    2.8 研究内容和研究方法
3 炉缸死料柱焦炭研究
    3.1 炉缸焦炭取样过程和分析方法介绍
    3.2 死料柱焦炭结构和成分研究
        3.2.1 BF A入炉焦炭成分和微观结构研究
        3.2.2 BF A死料柱焦炭成分和微观结构研究
        3.2.3 BF B死料柱焦炭成分和微观结构研究
        3.2.4 BF A死料柱焦炭石墨化研究
        3.2.5 死料柱无机矿物质含量变化研究
        3.2.6 死料柱焦炭石墨化和无机矿物质转变对高炉影响研究
    3.3 死料柱焦炭粒径分布研究
        3.3.1 BF A死料柱焦炭粒度分布研究
        3.3.2 BF B死料柱焦炭粒度分布研究
        3.3.3 BF A死料柱焦炭强度研究
    3.4 死料柱空隙度分布研究
    3.5 本章小结
4 高炉铁口日常维护制度下炉缸铁水流场模拟
    4.1 物理模型和数学模型
        4.1.1 数学模型的简化
        4.1.2 物理模型
        4.1.3 数学模型和边界条件
        4.1.4 网格的划分
    4.2 铁口深度对炉缸铁水流动的影响
        4.2.1 死料柱沉坐
        4.2.2 死料柱浮起
        4.2.3 生产实践实例分析
    4.3 泥包大小对炉缸铁水流动的影响
        4.3.1 死料柱沉坐
        4.3.2 死料柱浮起
    4.4 铁口倾角对炉缸铁水流动的影响
        4.4.1 死料柱沉坐
        4.4.2 死料柱浮起
    4.5 双铁口夹角对炉缸铁水流动的影响
        4.5.1 死料柱沉坐
        4.5.2 死料柱浮起
    4.6 模型验证
    4.7 本章小结
5 高炉特定炉缸状态下的铁水流场模拟
    5.1 死料柱浮起高度对炉缸铁水流动的影响
    5.2 死料柱中心透液性对炉缸铁水流动的影响
        5.2.1 死料柱沉坐
        5.2.2 死料柱浮起
    5.3 炉底温度降低对炉缸铁水流动的影响
        5.3.1 死料柱沉坐
        5.3.2 死料柱浮起
    5.4 本章小结
6 炉缸炭砖脆化层和保护层研究
    6.1 炉缸残余炭砖和保护层取样位置介绍
    6.2 炉缸炉底炭砖剩余厚度调研
    6.3 炉缸炭砖结构及成分和理化性能研究
        6.3.1 原始SGL炭砖微观形貌
        6.3.2 用后第9层SGL炭砖热面微观形貌
        6.3.3 用后第11层SGL炭砖热面微观形貌
        6.3.4 用后第12层SGL炭砖热面微观形貌
        6.3.5 用后第9层SGL炭砖理化性能分析
    6.4 炉缸炭砖脆化层形成机理研究
    6.5 炉缸炭砖保护层成分及微观结构研究
        6.5.1 用后第3层武彭炭砖热面保护层微观形貌
        6.5.2 用后第4层SGL炭砖热面保护层微观形貌
        6.5.3 用后第9层SGL炭砖热面保护层微观形貌
        6.5.4 炉底陶瓷垫热面微观形貌
    6.6 炉缸炭砖保护层形成机理研究
    6.7 本章小结
7 炭砖抗渣铁和碱金属及锌侵蚀设备的开发
    7.1 实验设备介绍
    7.2 实验步骤
    7.3 抗铁水侵蚀实验结果
    7.4 抗高炉渣侵蚀实验结果
    7.5 抗碱金属和锌侵蚀实验结果
    7.6 炭砖内部温度变化
    7.7 本章小结
8 结论与工作展望
    8.1 结论
    8.2 创新点
    8.3 工作展望
参考文献
作者简历及在学研究成果
学位论文数据集

(9)武钢高炉炉缸耐火材料结构创新(论文提纲范文)

1 武钢高炉炉缸概况
2 武钢高炉炉缸结构和选材
    2.1 炉缸侵蚀机制
    2.2 国内高炉炉缸选材
    2.3 国内传统炉缸结构
        2.3.1 大块炭砖炉缸结构
        2.3.2 小块炭砖炉缸结构
    2.4 武钢高炉炉缸炭砖结构创新
3 武钢高炉炉缸服役状况
4 结论

(10)高炉布料偏析优化及炉内气固两相流动特征研究(论文提纲范文)

致谢
摘要
Abstract
1 引言
2 文献综述
    2.1 无钟高炉炉顶系统
        2.1.1 无钟高炉炉顶上料系统
        2.1.2 无钟高炉炉顶装料系统
        2.1.3 无钟高炉炉顶布料系统
    2.2 无钟高炉炉料运动及分布检测
        2.2.1 无钟高炉炉顶装布料过程炉料运动及分布检测
        2.2.2 无钟高炉炉顶布料过程炉料运动轨迹检测方法
    2.3 无钟炉顶高炉装布料过程离散单元法仿真研究
    2.4 高炉内气固两相流动过程实验及仿真研究
    2.5 研究目的及内容
        2.5.1 研究目的
        2.5.2 研究内容
3 料罐结构、中心喉管直径和旋转溜槽结构对料面炉料分布偏析的影响
    3.1 物理模型
    3.2 数学模型
    3.3 料罐结构对料面炉料分布偏析的影响
        3.3.1 计算条件
        3.3.2 计算结果及讨论
    3.4 中心喉管直径对料面炉料分布偏析的影响
        3.4.1 计算条件
        3.4.2 计算结果及讨论
    3.5 旋转溜槽结构对料面炉料分布偏析的影响
        3.5.1 计算条件
        3.5.2 计算结果及讨论
    3.6 小结
4 上料时序、换向溜槽倾角和入炉球团矿比例对料面炉料分布偏析的影响
    4.1 上料时序对料面炉料分布碱度偏析的影响
        4.1.1 计算条件
        4.1.2 计算结果及讨论
    4.2 换向溜槽倾角对料面炉料分布粒度偏析的影响
        4.2.1 计算条件
        4.2.2 计算结果及讨论
    4.3 入炉球团矿比例对料面炉料分布偏析的影响
        4.3.1 计算条件
        4.3.2 计算结果及讨论
    4.4 小结
5 5500 m~3高炉并罐式无钟炉顶1:1模型实验研究
    5.1 实验目的及内容
    5.2 实验装置
    5.3 实验方法
        5.3.1 炉料落点半径测量方法
        5.3.2 炉喉中心标定
        5.3.3 旋转溜槽倾角标定
    5.4 实验结果及讨论
        5.4.1 中心喉管直径对炉料落点分布的影响
        5.4.2 旋转溜槽结构对炉料落点半径的影响
        5.4.3 入炉球团矿比例对炉料落点半径的影响
        5.4.4 “中心加焦”制度时不同溜槽倾角下料面形状对比
    5.5 实验结果与仿真结果对比
    5.6 小结
6 5500 m~3高炉炉内固体炉料流动及分布规律研究
    6.1 计算条件
    6.2 软熔带倾角对炉料下降过程运动行为的影响
    6.3 软熔带根部高度对炉料下降过程运动行为的影响
    6.4 矿石层厚度对炉料下降过程运动行为的影响
    6.5 小结
7 5500 m~3高炉炉内气相流动及分布规律研究
    7.1 数学模型
    7.2 计算条件及求解过程
    7.3 软熔带倾角对炉内气相流动及分布特征的影响
    7.4 软熔带根部高度对炉内气相流动及分布特征的影响
    7.5 矿石层厚度对炉内气相流动及分布特征的影响
    7.6 小结
8 结论和工作展望
    8.1 结论
    8.2 创新点
    8.3 工作展望
参考文献
作者简历及在学研究成果
学位论文数据集

四、武钢5号高炉的设计特点(论文参考文献)

  • [1]武钢有限7号高炉炉况诊断系统的开发和应用[J]. 刘栋梁,陈令坤. 冶金自动化, 2021(03)
  • [2]高炉炉衬与冷却壁损毁机理及长寿化研究[D]. 卢正东. 武汉科技大学, 2021(01)
  • [3]苏联专家援建包头钢铁公司考略[J]. 武月清,仪德刚. 工程研究-跨学科视野中的工程, 2021(01)
  • [4]太钢高碱度碱性球团矿制备及应用技术基础研究[D]. 李昊堃. 北京科技大学, 2020(11)
  • [5]2019年我国3000m3-4000m3高炉技术指标浅析[J]. 曾宇,姜曦,曹森华,贾镇汇,付聪,贾西明,寇明银. 中国钢铁业, 2020(08)
  • [6]新媒体时代包钢企业文化传播研究[D]. 王卫星. 内蒙古师范大学, 2020(08)
  • [7]武钢8号高炉高产长寿的主要经验[J]. 张庆喜,曾伟涛. 炼铁, 2020(01)
  • [8]长寿高炉炉缸炉底影响因素研究[D]. 牛群. 北京科技大学, 2020(06)
  • [9]武钢高炉炉缸耐火材料结构创新[J]. 卢正东,向武国,顾华志,黄奥,付绿平. 耐火材料, 2019(06)
  • [10]高炉布料偏析优化及炉内气固两相流动特征研究[D]. 徐文轩. 北京科技大学, 2020(06)

标签:;  ;  ;  ;  ;  

武钢5号高炉设计特点
下载Doc文档

猜你喜欢